Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
1.
J Hepatol ; 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38552880

ABSTRACT

The rising prevalence of liver diseases related to obesity and excessive use of alcohol is fuelling an increasing demand for accurate biomarkers aimed at community screening, diagnosis of steatohepatitis and significant fibrosis, monitoring, prognosis and prediction of treatment efficacy. Breakthroughs in omics methodologies and the power of bioinformatics have created an excellent opportunity to combine clinical needs with technological advancements. Omics technologies allow for advanced investigations into biological processes from the genes to transcription and regulation, to circulating protein, metabolite and lipid levels, as well as the microbiome including bacteria, viruses and fungi. We consequently find ourselves in a period of rapid progress in technology and bioinformatics that may allow for development of precision biomarkers for personalised medicine. However, there are important barriers to consider in omics biomarker discovery and validation, including the use of semi-quantitative measurements from untargeted platforms, which may exhibit high analytical, inter- and intra-individual variance. Standardising methods and the need to validate across diverse populations, presents a challenge, partly due to disease complexity and the dynamic nature of biomarker expression in different disease stages. Lack of validity causes lost opportunities when studies fail to provide the knowledge needed for regulatory approvals, all of which contributes to a delayed translation of these discoveries into clinical practice. While no omics-based biomarkers have matured to clinical implementation, the extent of data generated through omics-technologies holds the power of hypothesis-free discovery of a plethora of candidate biomarkers to be further validated. To explore the many opportunities of omics technologies, hepatologists need detailed knowledge of commonalities and differences between the various omics layers, and both the barriers to and advantages of these approaches.

2.
Microbiol Spectr ; : e0393322, 2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37750706

ABSTRACT

Clostridioides difficile infection (CDI) is a major health concern and one of the leading causes of hospital-acquired diarrhea in many countries. C. difficile infection is challenging to treat as C. difficile is resistant to multiple antibiotics. Alternative solutions are needed as conventional treatment with broad-spectrum antibiotics often leads to recurrent CDI. Recent studies have shown that specific microbiota-based therapeutics such as bile acids (BAs) are promising approaches to treat CDI. Clostridium scindens encodes the bile acid-induced (bai) operon that carries out 7-alpha-dehydroxylation of liver-derived primary BAs to secondary BAs. This biotransformation is thought to increase the antibacterial effects of BAs on C. difficile. Here, we used an automated multistage fermentor to study the antibacterial actions of C. scindens and BAs on C. difficile in the presence/absence of a gut microbial community derived from healthy human donor fecal microbiota. We observed that C. scindens inhibited C. difficile growth when the medium was supplemented with primary BAs. Transcriptomic analysis indicated upregulation of C. scindens bai operon and suppressed expression of C. difficile exotoxins that mediate CDI. We also observed BA-independent antibacterial activity of the secretome from C. scindens cultured overnight in a medium without supplementary primary BAs, which suppressed growth and exotoxin expression in C. difficile mono-culture. Further investigation of the molecular basis of our observation could lead to a more specific treatment for CDI than current approaches. IMPORTANCE There is an urgent need for new approaches to replace the available treatment options against Clostridioides difficile infection (CDI). Our novel work reports a bile acid-independent reduction of C. difficile growth and virulence gene expression by the secretome of Clostridium scindens. This potential treatment combined with other antimicrobial strategies could facilitate the development of alternative therapies in anticipation of CDI and in turn reduce the risk of antimicrobial resistance.

3.
mSystems ; 8(4): e0124922, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37427928

ABSTRACT

In vitro studies of synthetic gut microbial communities (SGMCs) can provide valuable insights into the ecological structure and function of gut microbiota. However, the importance of the quantitative composition of an SGMC inoculum and its effect on the eventual stable in vitro microbial community has not been studied. To address this, we constructed two 114-member SGMCs differing only in their quantitative composition-one reflecting the average human fecal microbiome and another mixed in equal proportions based on cell counts. We inoculated each in an automated anaerobic multi-stage in vitro gut fermentor simulating two different colonic conditions, mimicking proximal and distal colons. We replicated this setup with two different nutrient media, periodically sampled the cultures for 27 days, and profiled their microbiome compositions using 16S rRNA gene amplicon sequencing. While nutrient medium explained 36% of the variance in microbiome composition, initial inoculum composition failed to show a statistically significant effect. Under all four conditions, paired fecal and equal SGMC inoculums converged to reach stable community compositions resembling each other. Our results have broad implications for simplifying in vitro SGMC investigations. IMPORTANCE In vitro cultivation of synthetic gut microbial communities (SGMCs) can provide valuable insights into the ecological structure and function of gut microbiota. However, it is currently not known whether the quantitative composition of the initial inoculum can influence the eventual stable in vitro community structure. Hence, using two SGMC inoculums consisting of 114 unique species mixed in either equal proportions (Eq inoculum) or resembling proportions in an average human fecal microbiome (Fec inoculum), we show that initial inoculum compositions did not influence the final stable community structure in a multi-stage in vitro gut fermentor. Under two different nutrient media and two different colon conditions (proximal and distal), both Fec and Eq communities converged to resemble each other's community structure. Our results suggest that the time-consuming preparation of SGMC inoculums may not be needed and has broad implications for in vitro SGMC studies.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Humans , Gastrointestinal Microbiome/genetics , RNA, Ribosomal, 16S/genetics , Feces , Bioreactors
5.
NPJ Aging ; 9(1): 7, 2023 Apr 03.
Article in English | MEDLINE | ID: mdl-37012386

ABSTRACT

The gut microbiota impacts systemic levels of multiple metabolites including NAD+ precursors through diverse pathways. Nicotinamide riboside (NR) is an NAD+ precursor capable of regulating mammalian cellular metabolism. Some bacterial families express the NR-specific transporter, PnuC. We hypothesized that dietary NR supplementation would modify the gut microbiota across intestinal sections. We determined the effects of 12 weeks of NR supplementation on the microbiota composition of intestinal segments of high-fat diet-fed (HFD) rats. We also explored the effects of 12 weeks of NR supplementation on the gut microbiota in humans and mice. In rats, NR reduced fat mass and tended to decrease body weight. Interestingly, NR increased fat and energy absorption but only in HFD-fed rats. Moreover, 16S rRNA gene sequencing analysis of intestinal and fecal samples revealed an increased abundance of species within Erysipelotrichaceae and Ruminococcaceae families in response to NR. PnuC-positive bacterial strains within these families showed an increased growth rate when supplemented with NR. The abundance of species within the Lachnospiraceae family decreased in response to HFD irrespective of NR. Alpha and beta diversity and bacterial composition of the human fecal microbiota were unaltered by NR, but in mice, the fecal abundance of species within Lachnospiraceae increased while abundances of Parasutterella and Bacteroides dorei species decreased in response to NR. In conclusion, oral NR altered the gut microbiota in rats and mice, but not in humans. In addition, NR attenuated body fat mass gain in rats, and increased fat and energy absorption in the HFD context.

6.
Lancet Gastroenterol Hepatol ; 8(6): 523-532, 2023 06.
Article in English | MEDLINE | ID: mdl-36893774

ABSTRACT

BACKGROUND: Alcohol is the leading cause of liver-related mortality worldwide. The gut-liver axis is considered a key driver in alcohol-related liver disease. Rifaximin-α improves gut-barrier function and reduces systemic inflammation in patients with cirrhosis. We aimed to compare the efficacy and safety of rifaximin-α with placebo in patients with alcohol-related liver disease. METHODS: GALA-RIF was an investigator-initiated, randomised, double-blind, placebo-controlled, single-centre, phase 2 trial done at Odense University Hospital in Denmark. Eligible participants were adults (aged 18-75 years) who had current or previous alcohol overuse (at least 1 year with ≥24 g of alcohol per day for women and ≥36 g of alcohol per day for men), biopsy-proven alcohol-related liver disease, and no previous hepatic decompensation. Patients were randomly allocated (1:1) through a web-based randomisation system to receive oral rifaximin-α (550 mg) twice daily or matched placebo for 18 months. Randomisation was done in blocks of four and stratified according to fibrosis stage and alcohol abstinence. Participants, sponsor, investigators, and nurses involved in the study were masked to the randomisation outcome. The primary endpoint was a histological decrease from baseline to 18-month treatment of at least one fibrosis stage, according to the Kleiner fibrosis score. We also assessed the number of patients with progression by at least one fibrosis stage from baseline to 18 months. Primary analyses were done in the per-protocol and modified intention-to-treat populations; safety was assessed in the full intention-to-treat population. The per-protocol population was defined as all randomly assigned patients who did not present serious protocol violations, who ingested at least 75% of the treatment, and who were not withdrawn from the study due to non-adherence (interruption of treatment for 4 weeks or more). Participants receiving at least one dose of the intervention were included in the modified intention-to-treat analyses. This completed trial is registered with EudraCT, number 2014-001856-51. FINDINGS: Between March 23, 2015, and Nov 10, 2021, we screened 1886 consecutive patients with a history of excessive alcohol consumption and no previous hepatic decompensation, of whom 136 were randomly assigned to either rifaximin-α (n=68) or placebo (n=68). All patients were White (100%), 114 (84%) were men, and 22 (16%) were women. 133 (98%) patients received at least one dose of the intervention and were included in the modified intention-to-treat analysis; 108 (79%) completed the trial per protocol. In the per-protocol analysis, 14 (26%) of 54 patients in the rifaximin-α group and 15 (28%) of 54 patients in the placebo group had a decrease in fibrosis stage after 18 months (odds ratio 1·10 [95% CI 0·45-2·68]; p=0·83). In the modified intention-to-treat analysis, 15 (22%) of 67 patients in the rifaximin-α group and 15 (23%) of 66 patients in the placebo group had a decrease in fibrosis stage at 18 months (1·05 [0·45-2·44]; p=0·91). In the per-protocol analysis, increase in fibrosis stage occurred in 13 (24%) patients in the rifaximin-α group and 23 (43%) patients in the placebo group (0·42 [0·18-0·98]; p=0·044). In the modified intention-to-treat analysis, increase in fibrosis stage occurred in 13 (19%) patients in the rifaximin-α group and 23 (35%) patients in the placebo group (0·45 [0·20-1·02]; p=0·055). The number of patients with adverse events (48 [71%] of 68 patients in the rifaximin-α group; 53 [78%] of 68 in the placebo group) and serious adverse events (14 [21%] in the rifaximin-α group; 12 [18%] in the placebo group) was similar between the groups. No serious adverse events were deemed related to treatment. Three patients died during the trial, but none of the deaths were considered treatment related. INTERPRETATION: In patients with alcohol-related liver disease, rifaximin-α might reduce progression of liver fibrosis. These findings warrant confirmation in a multicentre phase 3 trial. FUNDING: The EU Horizon 2020 Research and Innovation Program and The Novo Nordisk Foundation.


Subject(s)
Liver Cirrhosis , Adult , Male , Humans , Female , Rifaximin/therapeutic use , Liver Cirrhosis/complications , Liver Cirrhosis/drug therapy , Biopsy
7.
Front Bioinform ; 2: 846922, 2022.
Article in English | MEDLINE | ID: mdl-36304282

ABSTRACT

Omics technologies have revolutionized microbiome research allowing the characterization of complex microbial communities in different biomes without requiring their cultivation. As a consequence, there has been a great increase in the generation of omics data from metagenomes and metatranscriptomes. However, pre-processing and analysis of these data have been limited by the availability of computational resources, bioinformatics expertise and standardized computational workflows to obtain consistent results that are comparable across different studies. Here, we introduce MIntO (Microbiome Integrated meta-Omics), a highly versatile pipeline that integrates metagenomic and metatranscriptomic data in a scalable way. The distinctive feature of this pipeline is the computation of gene expression profile through integrating metagenomic and metatranscriptomic data taking into account the community turnover and gene expression variations to disentangle the mechanisms that shape the metatranscriptome across time and between conditions. The modular design of MIntO enables users to run the pipeline using three available modes based on the input data and the experimental design, including de novo assembly leading to metagenome-assembled genomes. The integrated pipeline will be relevant to provide unique biochemical insights into microbial ecology by linking functions to retrieved genomes and to examine gene expression variation. Functional characterization of community members will be crucial to increase our knowledge of the microbiome's contribution to human health and environment. MIntO v1.0.1 is available at https://github.com/arumugamlab/MIntO.

8.
Aliment Pharmacol Ther ; 55(9): 1116-1127, 2022 05.
Article in English | MEDLINE | ID: mdl-35352373

ABSTRACT

BACKGROUND: The popularity of the gluten-free diet and sales of gluten-free products have increased immensely. AIMS: To investigate whether gluten induces gastrointestinal symptoms, measured by self-reported questionnaires, as well as mental health symptoms in adolescents from a population-based cohort. METHODS: The eligible participants (n = 273) were recruited from a population-based cohort of 1266 adolescents and had at least four different gastrointestinal symptoms. Phase one (n = 54) was a run-in phase where the participants lived gluten-free for 2 weeks. If they improved they continued to phase 2 (n = 33), a blinded randomised cross-over trial. Participants were blindly randomised either to start with 7 days of gluten, eating two granola bars containing 10 g of gluten or to 7 days on placebo, eating two granola bars without gluten, followed by the reverse and separated by a 7-day washout period. The effects of the intervention on gastrointestinal symptoms and mental health symptoms were assessed. RESULTS: In total, 54/273 participants entered the run-in phase and 35 were eligible for randomization. A total of 33 were randomised and 32 completed the trial. The median age was 20.3 (IQR 19.2-20.9) and 32/33 participants were females. Compared with a placebo, gluten did not induce gastrointestinal symptoms. The difference in the average VAS was -0.01 (95% confidence interval -2.07 to 2.05). Nor did we find a difference in the outcomes measuring mental health. CONCLUSION: Compared with placebo, adding gluten to the diet did not induce gastrointestinal symptoms or worsened mental health in adolescents recruited from a population-based cohort. The trial registration number is NCT04639921.


Subject(s)
Celiac Disease , Gastrointestinal Diseases , Adolescent , Adult , Cross-Over Studies , Diet, Gluten-Free/adverse effects , Double-Blind Method , Female , Gastrointestinal Diseases/etiology , Glutens/adverse effects , Humans , Male , Young Adult
9.
Environ Int ; 158: 106899, 2022 01.
Article in English | MEDLINE | ID: mdl-34598063

ABSTRACT

Antibiotic-resistant pathogens constitute an escalating public health concern. Hence a better understanding of the underlying processes responsible for this expansion is urgently needed. Co-selection of heavy metal/biocide and antibiotic resistance genes (ARGs) has been suggested as one potential mechanism promoting the proliferation of antimicrobial resistance (AMR). This paper aims to elucidate this interplay and exploit differences in antibiotic usage to infer patterns of co-selection by the non-antibiotic factors metals and biocides in the context of pig farming. We examined 278 gut metagenomes from pigs with continuous antibiotic exposure, only at weaning and at no exposure. Metals as growth promoters and biocides as disinfectants are currently used with little restrictions in stock farming. The pigs under continuous antibiotic exposure displayed the highest co-occurrence of ARGs and other genetic elements while the pigs under limited use of antibiotics still showed abundant co-occurrences. Pathogens belonging to Enterobacteriaceae displayed increased co-occurrence phenomena, suggesting that this maintenance is not a random selection process from a mobilized pool but pertains to specific phylogenetic clades. These results suggest that metals and biocides displayed strong selective pressures on ARGs exerted by intensive farming, regardless of the current use of antibiotics.


Subject(s)
Disinfectants , Metals, Heavy , Animals , Anti-Bacterial Agents/pharmacology , Genes, Bacterial , Metagenome , Metals, Heavy/toxicity , Phylogeny , Swine
10.
Nat Med ; 27(11): 1885-1892, 2021 11.
Article in English | MEDLINE | ID: mdl-34789871

ABSTRACT

The particularly interdisciplinary nature of human microbiome research makes the organization and reporting of results spanning epidemiology, biology, bioinformatics, translational medicine and statistics a challenge. Commonly used reporting guidelines for observational or genetic epidemiology studies lack key features specific to microbiome studies. Therefore, a multidisciplinary group of microbiome epidemiology researchers adapted guidelines for observational and genetic studies to culture-independent human microbiome studies, and also developed new reporting elements for laboratory, bioinformatics and statistical analyses tailored to microbiome studies. The resulting tool, called 'Strengthening The Organization and Reporting of Microbiome Studies' (STORMS), is composed of a 17-item checklist organized into six sections that correspond to the typical sections of a scientific publication, presented as an editable table for inclusion in supplementary materials. The STORMS checklist provides guidance for concise and complete reporting of microbiome studies that will facilitate manuscript preparation, peer review, and reader comprehension of publications and comparative analysis of published results.


Subject(s)
Computational Biology/methods , Dysbiosis/microbiology , Microbiota/physiology , Observational Studies as Topic/methods , Research Design , Humans , Translational Science, Biomedical
11.
mSystems ; 6(5): e0038221, 2021 Oct 26.
Article in English | MEDLINE | ID: mdl-34665009

ABSTRACT

Gut viruses are important, yet often neglected, players in the complex human gut microbial ecosystem. Recently, the number of human gut virome studies has been increasing; however, we are still only scratching the surface of the immense viral diversity. In this study, 254 virus-enriched fecal metagenomes from 204 Danish subjects were used to generate the Danish Enteric Virome Catalog (DEVoC) containing 12,986 nonredundant viral scaffolds, of which the majority was previously undescribed, encoding 190,029 viral genes. The DEVoC was used to compare 91 healthy DEVoC gut viromes from children, adolescents, and adults that were used to create the DEVoC. Gut viromes of healthy Danish subjects were dominated by phages. While most phage genomes (PGs) only occurred in a single subject, indicating large virome individuality, 39 PGs were present in more than 10 healthy subjects. Among these 39 PGs, the prevalences of three PGs were associated with age. To further study the prevalence of these 39 prevalent PGs, 1,880 gut virome data sets of 27 studies from across the world were screened, revealing several age-, geography-, and disease-related prevalence patterns. Two PGs also showed a remarkably high prevalence worldwide-a crAss-like phage (20.6% prevalence), belonging to the tentative AlphacrAssvirinae subfamily, and a previously undescribed circular temperate phage infecting Bacteroides dorei (14.4% prevalence), called LoVEphage because it encodes lots of viral elements. Due to the LoVEphage's high prevalence and novelty, public data sets in which the LoVEphage was detected were de novo assembled, resulting in an additional 18 circular LoVEphage-like genomes (67.9 to 72.4 kb). IMPORTANCE Through generation of the DEVoC, we added numerous previously uncharacterized viral genomes and genes to the ever-increasing worldwide pool of human gut viromes. The DEVoC, the largest human gut virome catalog generated from consistently processed fecal samples, facilitated the analysis of the 91 healthy Danish gut viromes. Characterizing the biggest cohort of healthy gut viromes from children, adolescents, and adults to date confirmed the previously established high interindividual variation in human gut viromes and demonstrated that the effect of age on the gut virome composition was limited to the prevalence of specific phage (groups). The identification of a previously undescribed prevalent phage illustrates the usefulness of developing virome catalogs, and we foresee that the DEVoC will benefit future analysis of the roles of gut viruses in human health and disease.

12.
mSystems ; 6(4): e0023221, 2021 Aug 31.
Article in English | MEDLINE | ID: mdl-34313459

ABSTRACT

Longitudinal studies of gut microbiota following specific interventions are vital for understanding how they influence host health. However, robust longitudinal sampling of gut microbiota is a major challenge, which can be addressed using in vitro fermentors hosting complex microbial communities. Here, by employing 16S rRNA gene amplicon sequencing, we investigated the adaptation and succession of human fecal microbial communities in an automated multistage fermentor. We performed two independent experiments using different human donor fecal samples, one configured with two units of three colon compartments each studied for 22 days and another with one unit of two colon compartments studied for 31 days. The fermentor maintained a trend of increasing microbial alpha diversity along colon compartments. Within each experiment, microbial compositions followed compartment-specific trajectories and reached independent stable configurations. While compositions were highly similar between replicate units, they were clearly separated between different experiments, showing that they maintained the individuality of fecal inoculum rather than converging on a fermentor-specific composition. While some fecal amplicon sequence variants (ASVs) were undetected in the fermentor, many ASVs undetected in the fecal samples flourished in vitro. These bloomer ASVs accounted for significant proportions of the population and included prominent health-associated microbes such as Bacteroides fragilis and Akkermansia muciniphila. Turnover in community compositions is likely explained by feed composition and pH, suggesting that these communities can be easily modulated. Our results suggest that in vitro fermentors are promising tools to study complex microbial communities harboring important members of human gut microbiota. IMPORTANCE In vitro fermentors that can host complex gut microbial communities are promising tools to investigate the dynamics of human gut microbiota. In this work, using an automated in vitro gut fermentor consisting of different colon compartments, we investigated the adaptation dynamics of two different human fecal microbial communities over 22 and 31 days. By observing the temporal trends of different community members, we found that many dominant members of the fecal microbiota failed to maintain their dominance in vitro, and some of the low-abundance microbes undetected in the fecal microbiota successfully grew in the in vitro communities. Microbiome compositional changes and blooming could largely be explained by feed composition and pH, suggesting that these communities can be modulated to desired compositions via optimizing culture conditions. Thus, our results open up the possibility of modulating in vitro microbial communities to predefined compositions by optimizing feed composition and culture conditions.

13.
Genome Biol ; 22(1): 209, 2021 07 14.
Article in English | MEDLINE | ID: mdl-34261503

ABSTRACT

BACKGROUND: Akkermansia muciniphila is a human gut microbe with a key role in the physiology of the intestinal mucus layer and reported associations with decreased body mass and increased gut barrier function and health. Despite its biomedical relevance, the genomic diversity of A. muciniphila remains understudied and that of closely related species, except for A. glycaniphila, unexplored. RESULTS: We present a large-scale population genomics analysis of the Akkermansia genus using 188 isolate genomes and 2226 genomes assembled from 18,600 metagenomes from humans and other animals. While we do not detect A. glycaniphila, the Akkermansia strains in the human gut can be grouped into five distinct candidate species, including A. muciniphila, that show remarkable whole-genome divergence despite surprisingly similar 16S rRNA gene sequences. These candidate species are likely human-specific, as they are detected in mice and non-human primates almost exclusively when kept in captivity. In humans, Akkermansia candidate species display ecological co-exclusion, diversified functional capabilities, and distinct patterns of associations with host body mass. Analysis of CRISPR-Cas loci reveals new variants and spacers targeting newly discovered putative bacteriophages. Remarkably, we observe an increased relative abundance of Akkermansia when cognate predicted bacteriophages are present, suggesting ecological interactions. A. muciniphila further exhibits subspecies-level genetic stratification with associated functional differences such as a putative exo/lipopolysaccharide operon. CONCLUSIONS: We uncover a large phylogenetic and functional diversity of the Akkermansia genus in humans. This variability should be considered in the ongoing experimental and metagenomic efforts to characterize the health-associated properties of A. muciniphila and related bacteria.


Subject(s)
Gastrointestinal Microbiome/genetics , Genome, Bacterial , Metagenome , Phylogeny , Akkermansia/classification , Akkermansia/genetics , Akkermansia/metabolism , Akkermansia/virology , Animals , Bacteriophages/growth & development , Clustered Regularly Interspaced Short Palindromic Repeats , Genetic Variation , Humans , Mice , Operon , RNA, Ribosomal, 16S/genetics
14.
Genome Med ; 13(1): 37, 2021 03 03.
Article in English | MEDLINE | ID: mdl-33658058

ABSTRACT

BACKGROUND: Type 2 diabetes (T2D), a multifactorial disease influenced by host genetics and environmental factors, is the most common endocrine disease. Several studies have shown that the gut microbiota as a close-up environmental mediator influences host physiology including metabolism. The aim of the present study is to examine the compositional and functional potential of the gut microbiota across individuals from Denmark and South India with a focus on T2D. Many earlier studies have investigated the microbiome aspects of T2D, and it has also been anticipated that such microbial associations would be dependent on diet and ethnic origin. However, there has been no large scale trans-ethnic microbiome study earlier in this direction aimed at evaluating any "universal" microbiome signature of T2D. METHODS: 16S ribosomal RNA gene amplicon sequencing was performed on stool samples from 279 Danish and 294 Indian study participants. Any differences between the gut microbiota of both populations were explored using diversity measures and negative binomial Wald tests. Study samples were stratified to discover global and country-specific microbial signatures for T2D and treatment with the anti-hyperglycemic drug, metformin. To identify taxonomical and functional signatures of the gut microbiota for T2D and metformin treatment, we used alpha and beta diversity measures and differential abundances analysis, comparing metformin-naive T2D patients, metformin-treated T2D patients, and normoglycemic individuals. RESULTS: Overall, the gut microbial communities of Danes and Indians are compositionally very different. By analyzing the combined study materials, we identify microbial taxonomic and functional signatures for T2D and metformin treatment. T2D patients have an increased relative abundance of two operational taxonomic units (OTUs) from the Lachnospiraceae family, and a decreased abundance of Subdoligranulum and Butyricicoccus. Studying each population per se, we identified T2D-related microbial changes at the taxonomic level within the Danish population only. Alpha diversity indices show that there is no significant difference between normoglycemic individuals and metformin-naive T2D patients, whereas microbial richness is significantly decreased in metformin-treated T2D patients compared to metformin-naive T2D patients and normoglycemic individuals. Enrichment of two OTUs from Bacteroides and depletion of Faecalibacterium constitute a trans-ethnic signature of metformin treatment. CONCLUSIONS: We demonstrate major compositional differences of the gut microbiota between Danish and South Indian individuals, some of which may relate to differences in ethnicity, lifestyle, and demography. By comparing metformin-naive T2D patients and normoglycemic individuals, we identify T2D-related microbiota changes in the Danish and Indian study samples. In the present trans-ethnic study, we confirm that metformin changes the taxonomic profile and functional potential of the gut microbiota.


Subject(s)
Diabetes Mellitus, Type 2/microbiology , Ethnicity , Gastrointestinal Microbiome , Adult , Aged , Denmark , Female , Gastrointestinal Microbiome/drug effects , Humans , India , Male , Metformin/pharmacology , Middle Aged , Phylogeny
15.
Genome Med ; 13(1): 36, 2021 03 03.
Article in English | MEDLINE | ID: mdl-33658065

ABSTRACT

BACKGROUND: Recent studies have indicated an association of gut microbiota and microbial metabolites with type 2 diabetes mellitus (T2D). However, large-scale investigation of the gut microbiota of "prediabetic" (PD) subjects has not been reported. Identifying robust gut microbiome signatures of prediabetes and characterizing early prediabetic stages is important for the understanding of disease development and could be crucial in early diagnosis and prevention. METHODS: The current study performed amplification and sequencing on the variable regions (V1-V5) of the 16S rRNA genes to profile and compare gut microbiota of prediabetic individuals (N = 262) with normoglycemic individuals (N = 275) from two cohorts in India and Denmark. Similarly, fasting serum inflammatory biomarkers were profiled from the study participants. RESULTS: After correcting for strong country-specific cohort effect, 16 operational taxonomic units (OTUs) including members from the genera Prevotella9, Phascolarctobacterium, Barnesiella, Flavonifractor, Tyzzerella_4, Bacteroides, Faecalibacterium, and Agathobacter were identified as enriched in normoglycaemic subjects with respect to the subjects with prediabetes using a negative binomial Wald test. We also identified 144 OTUs enriched in the prediabetic subjects, which included members from the genera Megasphaera, Streptococcus, Prevotella9, Alistipes, Mitsuokella, Escherichia/Shigella, Prevotella2, Vibrio, Lactobacillus, Alloprevotella, Rhodococcus, and Klebsiella. Comparative analyses of relative abundance of bacterial taxa revealed that the Streptococcus, Escherichia/Shigella, Prevotella2, Vibrio, and Alloprevotella OTUs exhibited more than fourfold enrichment in the gut microbiota of prediabetic subjects. When considering subjects from the two geographies separately, we were able to identify additional gut microbiome signatures of prediabetes. The study reports a probable association of Megasphaera OTU(s) with impaired glucose tolerance, which is significantly pronounced in Indian subjects. While the overall results confirm a state of proinflammation as early as in prediabetes, the Indian cohort exhibited a characteristic pattern of abundance of inflammatory markers indicating low-grade intestinal inflammation at an overall population level, irrespective of glycemic status. CONCLUSIONS: The results present trans-ethnic gut microbiome and inflammation signatures associated with prediabetes, in Indian and Danish populations. The identified associations may be explored further as potential early indicators for individuals at risk of dysglycemia.


Subject(s)
Ethnicity , Gastrointestinal Microbiome , Prediabetic State/microbiology , Adult , Aged , Algorithms , Biomarkers/metabolism , Cohort Studies , Denmark , Female , Genetic Predisposition to Disease , Humans , India , Inflammation/pathology , Male , Middle Aged , Phenotype , Phylogeny
16.
Nat Rev Gastroenterol Hepatol ; 18(3): 167-180, 2021 03.
Article in English | MEDLINE | ID: mdl-33257833

ABSTRACT

The human gut microbiome has emerged as a major player in human health and disease. The liver, as the first organ to encounter microbial products that cross the gut epithelial barrier, is affected by the gut microbiome in many ways. Thus, the gut microbiome might play a major part in the development of liver diseases. The common end stage of liver disease is decompensated cirrhosis and the further development towards acute-on-chronic liver failure (ACLF). These conditions have high short-term mortality. There is evidence that translocation of components of the gut microbiota, facilitated by different pathogenic mechanisms such as increased gut epithelial permeability and portal hypertension, is an important driver of decompensation by induction of systemic inflammation, and thereby also ACLF. Elucidating the role of the gut microbiome in the aetiology of decompensated cirrhosis and ACLF deserves further investigation and improvement; and might be the basis for development of diagnostic and therapeutic strategies. In this Review, we focus on the possible pathogenic, diagnostic and therapeutic role of the gut microbiome in decompensation of cirrhosis and progression to ACLF.


Subject(s)
Acute-On-Chronic Liver Failure/etiology , Acute-On-Chronic Liver Failure/pathology , Gastrointestinal Microbiome/physiology , Liver Cirrhosis/etiology , Liver Cirrhosis/pathology , Humans
17.
PLoS One ; 15(9): e0238648, 2020.
Article in English | MEDLINE | ID: mdl-32947608

ABSTRACT

Elevated postprandial plasma glucose is a risk factor for development of type 2 diabetes and cardiovascular disease. We hypothesized that the inter-individual postprandial plasma glucose response varies partly depending on the intestinal microbiome composition and function. We analyzed data from Danish adults (n = 106), who were self-reported healthy and attended the baseline visit of two previously reported randomized controlled cross-over trials within the Gut, Grain and Greens project. Plasma glucose concentrations at five time points were measured before and during three hours after a standardized breakfast. Based on these data, we devised machine learning algorithms integrating bio-clinical, as well as shotgun-sequencing-derived taxa and functional potentials of the intestinal microbiome to predict individual postprandial glucose excursions. In this post hoc study, we found microbial and clinical features, which predicted up to 48% of the inter-individual variance of postprandial plasma glucose responses (Pearson correlation coefficient of measured vs. predicted values, R = 0.69, 95% CI: 0.45 to 0.84, p<0.001). The features were age, fasting serum triglycerides, systolic blood pressure, BMI, fasting total serum cholesterol, abundance of Bifidobacterium genus, richness of metagenomics species and abundance of a metagenomic species annotated to Clostridiales at order level. A model based only on microbial features predicted up to 14% of the variance in postprandial plasma glucose excursions (R = 0.37, 95% CI: 0.02 to 0.64, p = 0.04). Adding fasting glycaemic measures to the model including microbial and bio-clinical features increased the predictive power to R = 0.78 (95% CI: 0.59 to 0.89, p<0.001), explaining more than 60% of the inter-individual variance of postprandial plasma glucose concentrations. The outcome of the study points to a potential role of the taxa and functional potentials of the intestinal microbiome. If validated in larger studies our findings may be included in future algorithms attempting to develop personalized nutrition, especially for prediction of individual blood glucose excursions in dys-glycaemic individuals.


Subject(s)
Blood Glucose/metabolism , Gastrointestinal Microbiome , Postprandial Period , Algorithms , Fasting/blood , Female , Humans , Life Style , Male , Middle Aged , Models, Biological , Phenomics
19.
Nat Commun ; 11(1): 3285, 2020 07 03.
Article in English | MEDLINE | ID: mdl-32620774

ABSTRACT

The early life human gut microbiota exerts life-long health effects on the host, but the mechanisms underpinning its assembly remain elusive. Particularly, the early colonization of Clostridiales from the Roseburia-Eubacterium group, associated with protection from colorectal cancer, immune- and metabolic disorders is enigmatic. Here, we describe catabolic pathways that support the growth of Roseburia and Eubacterium members on distinct human milk oligosaccharides (HMOs). The HMO pathways, which include enzymes with a previously unknown structural fold and specificity, were upregulated together with additional glycan-utilization loci during growth on selected HMOs and in co-cultures with Akkermansia muciniphila on mucin, suggesting an additional role in enabling cross-feeding and access to mucin O-glycans. Analyses of 4599 Roseburia genomes underscored the preponderance and diversity of the HMO utilization loci within the genus. The catabolism of HMOs by butyrate-producing Clostridiales may contribute to the competitiveness of this group during the weaning-triggered maturation of the microbiota.


Subject(s)
Butyrates/metabolism , Clostridiales/metabolism , Milk, Human/metabolism , Mucins/metabolism , Oligosaccharides/metabolism , Akkermansia , Bifidobacterium/metabolism , Clostridiales/genetics , Colon/microbiology , Eubacterium/metabolism , Gastrointestinal Microbiome/physiology , Humans , Infant , Infant, Newborn , Metabolism/physiology , Milk, Human/chemistry , Polysaccharides/metabolism , Verrucomicrobia/metabolism , Weaning
20.
J Neuroinflammation ; 17(1): 79, 2020 Mar 06.
Article in English | MEDLINE | ID: mdl-32143718

ABSTRACT

The gut microbiota regulates the host immune and nervous systems and plays an important role in the pathogenesis of autoimmune neurological disease multiple sclerosis (MS). There are considerable efforts currently being undertaken to develop therapies for MS based on the modulation of microbiota. Evidence from experimental models suggests that the manipulation of microbiota through diet or antibiotics prior to the disease development limits disease susceptibility. However, it is currently unclear if microbiota manipulation therapies would also have an impact on ongoing neurological disease. Here, we examined the effect of antibiotic-based microbiota modulation in spontaneous experimental autoimmune encephalomyelitis (EAE) mouse models of MS before and after the onset of autoimmune disease. Prophylactic antibiotic treatment led to a significant reduction of susceptibility to spontaneous EAE. In contrast, antibiotic treatment after the onset of spontaneous EAE did not show a significant amelioration. These results reveal that the perturbation of gut bacteria alters disease susceptibility but has minimal impact on the ongoing neurological disease.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Gastrointestinal Microbiome/drug effects , Neuroimmunomodulation/physiology , Animals , Anti-Bacterial Agents/pharmacology , Brain/pathology , Disease Susceptibility , Encephalomyelitis, Autoimmune, Experimental/pathology , Mice , Neuroimmunomodulation/drug effects , Spinal Cord/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...